

MATURITY CURVE, CERTIFICATION OF VELLOPMENT, CERTIFICATION

PRESENTED BY TIM KRASOM

OUTLINE

- Significance and Use
- Equipment
- Procedure for Development of the Curve
- Methods for Monitoring the Concrete Temperature
 - Maturity Meter
 - Digital Thermometer (Hand Calculated Method)
- Steps for Plotting the Maturity Curve
- Steps for Validating the Maturity Curve

MATURITY METHOD- SIGNIFICANCE AND USE

- Useful means of estimating concrete strength gain at early ages (generally less than 7 days).
- Provides real time in-place strength of concrete for pavement s or structures.
- Determines the appropriate time for opening pavement to traffic, sawing joints and stripping forms.
- Currently is used by NDOR for acceptance testing for only pavement repairs and high early concrete.

EQUIPMENT

EQUIPMENT

PROCEDURE REQUIREMENTS

- Locations
 - Ready Mix Plants
 - On site

- Mix Design
 - Fresh concrete tests must meet specifications (Air, Slump)
 - Water Cement Ratio (W/CM)
 - Workability
- Specimens
 - Cast a minimum of 10 cylinders(4x8)
 - 14 maximum
- Installation
 - Embed 2 thermocouple wires

PROCEDURE REQUIREMENTS- CONTINUED..

Curing:

Cure the cylinders to best represent the concrete placement

- Paving or Structures
 - On Grade
 - Insulated Box
 - Curing Blankets
 - Near Structure
 - In a Trailer
- Pavement Repair (PR) and High Early Concrete (HE)
 - Insulated Box
 - Curing Blankets

After casting cylinders, move cylinders immediately to final location for curing

MATURITY METER

This is the preferred method for monitoring concrete temperature.

- Maturity Meter datum temperature setting shall be set to -10 C.
 - Connect the mini-connectors to Channel 1 (CH 1) and to Channel 2 (CH 2) on the maturity meter.
 - Start the recording on Meter. (Write down the initial temperature and time taken)
- Other commercially made Maturity Meters you may install Plugs or sensors in the concrete. Monitoring process will be slightly different based on the equipment.
- For Reference: The age to test the first set of cylinders for compressive Strength is determined from when the maturity meter recording is started.
 - Cylinders for PR concrete may be moved 2.5 hours after casting.
 - Cylinders for HE and Paving concrete may be moved 8 hours after the concrete has reached final set.
- For Reference: The approximate ages when to perform compressive strength testing on your first set of cylinders.
 - PR concrete may begin at <u>three or four</u> hours depending on the time of year and the type of cement used.
 - HE concrete may begin at <u>twelve to twenty-four</u> hours.
 - Paving concrete may begin <u>at twenty-four</u> hours.

MATURITY METER

MATURITY METER

- TTF (Time-Temperature-Factor) is computed by the Maturity meter.
- TTF values along with cylinder comp. strengths is then entered into Maturity Curve Spreadsheet.

cc: PM, Project Inspectors, District QAM

ON. NO.:	70881	CON	ITRACT NO	: 7881	CONTRA	ACTOR:	Ten Point			DATE:	06/11/11
Cylinder #	LOAD AT BREAK (lbs)	BREAK TYPE	Length (in)	(in)	Compressive STRENGTH (psi)	AGE AT BREAK (Hrs)	TTF CH 1	TTF CH 2	AVERAGE TTF	Cylinder TEMP (AVG)	
10	Enter		Enter	Enter		Enter	Enter	Enter		Enter	
1	27260		8.00	4.00	2170	4	181	181	181	53 C	
2	26720		8.00	4.00	2130	4	181	181	181		
3	28110		8.00	4.00	2240	4	181	181	181		NIT
4	37180		8.00	4.00	2960	5	246	246	246		NI J
5	38070		8.00	4.00	3030	5	246	246	246		
6	37870		8.00	4.00	3010	5	246	246	246		Nebra
7	41040		8.00	4.00	3270	5.5	280	280	280	- 1	Departmen
8	40420		8.00	4.00	3220	5.5	280	280	280	I	Materials &
9	39470		8.00	4.00	3140	5.5	280	280	280		
10	47810		8.00	4.00	3800	6.5	348	348	348	58 C	
11	48640		8.00	4.00	3870	6.5	348	348	348		
12	48225		8.00	4.00	3840	6.5	348	348	348		
MIX	INFORMATION		Ent	ter				Maturity	Curve		*
		Mix:	PR1 W/ Liqu	uid Calcium				All Compressiv			
		AIR:	6.	4							
		SLUMP:			4000				1 1		
		w/c:			3750					*	
		H SOURCE:			0,00						
		T SOURCE:			3500	_	-				
	E AGGREGATI				S 3250						
	E AGGREGATI				£ 3250						
W	ATER REDUCI				thg 3000 2750)			
		Add. Rate:			夏						Regression
	AIR ADMIXTU				Ø 2750				+		× Strengths
		Add. Rate:			. <u>≥</u> 2500						T outerights
	HOD OF DEVE		Cylinders /		8 2000		/				
DESI	RED COMP. STR	RENGTH (psi):	3000	psi	2500 2250						
REQUIR	ED MINIM	JM TTF:	251]	2000			2.1112			
					1750						
						100		Log of TT	F (C-hours)	•	1//
Mat	erials & Res	oorob Ba	anninih:		Fine A. Manage		ے	comments:	Weather - App	rox 74 F for Hi	gh.
mat	eriais & Res	еагси керг	esentative -		Tim A. Krason Signature		_ A	dded Glenium	3030 on site.		
			esentative -								

SETUP

HAND CALCULATED METHOD

Alternative method for monitoring concrete temperature

- Connect the mini-connectors
 - Designate Channel 1 (CH 1) and Channel 2 (CH 2)
- Record the time the initial temperature was taken for each designated channel.
- The temperature reading will be in Celsius.
- The TTF shall be calculated at each age that a set of cylinders are tested.

Hand Calculated Method

$M(t) = \Sigma (T_a - T_o) \Delta t$ (Nurse-Saul Equation)

- **M(t)** = Time Temperature Factor at the age the calculation is performed.
- T_a = Average temperature using the initial temperature and the elapsed time temperature reading.
- $T_o = Datum temperature of -10° C$
- $\Delta t = A \text{ time interval (Hours)}$

HAND CALCULATING EXAMPLE

$$M(t) = \Sigma (Ta - To) \Delta t$$
 (Nurse-Saul Equation)

Example 1: The initial temperature of concrete is 19.7°C (20.0°C) and 3 hours later it was 50°C.

$$T_a = \frac{(20+50)}{2} = 35 ^{\circ} C$$

$$T_0 = -10$$
 ° C

$$\Delta t = 3$$
 hours

elapsed time is 3 hours from when the initial temperature was taken.

M (TTF)=
$$\sum (Ta - To)\Delta t$$

$$M(TTF) = \Sigma (35^{\circ}C + 10^{\circ}C) 3 hrs$$

always add 10 °C to the average. When subtracting a negative number add it.

	MATURITY METHOD - FIELD DATA SHEET									
					EXAMPLE					
Project :		EACNH-30-5((121) Columb	ous East		Ma	turity Curve #:	1		
Con	trol #:	32031		Contract #:			Date Placed:	10/10/2001		
Contractor:							Mix:	PR1-3500		
						Targ	get TTF Value :	305		
		Section (of Paveme	nt to Open C	R Structura	l Unit for For	m Removal o	r Loading		
		From	Station:			To Station:				
			Age	Temp	TTF	Sum	Air Temp			
		<u>Date</u>	<u>Time</u>	(hours)	(deq C)	at age	TTF	(deq C)		
						(deg C-hr)	(deg C-hr)			
Probe #	1	10/02/01	11:00 AM	0.00	21		0			
		10/02/01	01:00 PM	2.00	33	74	74			
		10/02/01	02:00 PM	3.00	42	47.5	122			
		10/02/01	03:00 PM	4.00	49	55.5	177			
		10/02/01	03:30 PM	4.50	53	30.5	208			
		10/02/01	04:00 PM	5.00	56	32.25	240			
		10/02/01	04:30 PM	5.50	57	33.25	273			
		10/02/01	05:00 PM	6.00	58	33.75				
						0		•		
						TTF:	307			

NDOR MATURITY METHOD - COMPRESSIVE STRENGTH DEVELOPMENT

 PROJECT:
 STP D-6-2(122) Culbertson to McCook
 CURVE NO.:
 1-Open

 CON. NO.:
 70881
 CONTRACT NO:
 7881
 CONTRACTOR:
 Ten Point
 DATE:
 06/11/11

Cylinder#	LOAD AT	BREAK	Length	Diameter	Compressive	AGE AT	TTF	TTF	AVERAGE	Cylinder
	BREAK	TYPE			STRENGTH	BREAK	CH 1	CH 2	TTF	TEMP
	(lbs)		(in)	(in)	(psi)	(Hrs)				(AVG)
	Enter		Enter	Enter		Enter	Enter	Enter		Enter
1	27260		8. 00	4. 00	2170	4	181	181	181	53 C
2	26720		8. 00	4. 00	2130	4	181	181	181	
3	28110		8. 00	4. 00	2240	4	181	181	181	
4	37180		8. 00	4. 00	2960	5	246	246	246	
5	38070		8. 00	4. 00	3030	5	246	246	246	
6	37870		8. 00	4. 00	3010	5	246	246	246	
7	41040		8. 00	4. 00	3270	5. 5	280	280	280	
8	40420		8. 00	4. 00	3220	5. 5	280	280	280	
9	39470		8. 00	4. 00	3140	5. 5	280	280	280	
10	47810		8. 00	4. 00	3800	6. 5	348	348	348	58 C
11	48640		8. 00	4. 00	3870	6. 5	348	348	348	
12	48225		8. 00	4. 00	3840	6. 5	348	348	348	

MIX INFORMATION	Enter
Mix:	PR1 W/ Liquid Calcium
AIR:	6.4
SLUMP:	
w/c:	
FLY ASH SOURCE:	
CEMENT SOURCE:	
COARSE AGGREGATE SOURCE:	
FINE AGGREGATE SOURCE:	
WATER REDUCER BRAND:	
Add. Rate:	
AIR ADMIXTURE BRAND:	
Add. Rate:	
METHOD OF DEVELOPMENT:	Cylinders / Cure Box
DESIRED COMP. STRENGTH (psi):	3000 psi

REQUIRED MINIMUM TTF:

1750 1500 2.100

251

Certified Rep. & Company Name: _______ Tim A. Krason, NDOR
Signature

Certified Rep. & Company Name: ______ Signature

cc: PM, Project Inspectors, NDOR District QAM, NDOR PCC Mgr.

Comments: Weather - Approx 74 F for High.

Added Glenium 3030 on site.

See sitemanager entry for mix information.

STEPS FOR VALIDATING MATURITY CURVE

Curve Validation

- Curve validation shall be performed approximately every 4 to 6 weeks during normal plant production and any change in the mix design.
- NDOR PCC Manager or Consultant will schedule the validation date with the PE and Field Inspectors.
- The Field Inspectors will be requested to make five cylinders on the validation scheduled date.
- The Field Inspector will need to embed two thermocouple wires into two concrete cylinders.
- The certified personnel will request that the Field Inspector document
 - The time the cylinders were cast.
 - The initial temperature of the cylinders.
- Test three cylinders as close as possible to the Required Minimum TTF that is from the most current maturity curve being used.

NDOR VERIFICATION OF MATURITY CURVE - COMPRESSIVE STRENGTH DEVELOPMENT PROJECT: STPD-6-2(122) Culbertson to McCook CURVE NO.: 1-Verify C.N.: 7881 CONTRACTOR: Ten Point DATE: 7/11/2011 **AVERAGE** CYLINDER# LOAD AT **BREAK** Length Diameter Compressive AGE AT TTF TTF **BREAK** TYPE STRENGTH **BREAK** CH₁ CH 2 TTF (lbs) (in) (in) (psi) (Hrs) (in) Enter Enter Enter Enter Enter Enter 1 3350 265 5 42120 8.00 4.00 265 265 2 3310 265 41600 8.00 4.00 5 265 265 3 3330 265 41880 8.00 4.00 265 265 MIX: Enter PR1 W/ Liquid Calcium Verification Curve AIR: 8 Enter of All Compressive Strengths SLUMP: Enter w/c: FLY ASH: 5000 CEMENT: COARSE AGGREGATE: FINE AGGREGATE: WATER REDUCER: 4000 Add. Rate: Compressive Strength (psi) AIR ENTRAINER: -Regression Add. Rate: METHOD OF DEVELOPMENT: Cylinders / Cure Box Verification 3000 **CURVE VERIFICATION** Upper Limit 265 TTF @ Break -Lower Limit 2000 Cylinder 1 3350 (psi) Cylinder 2 (psi) 3310 Cylinder 3 1000 3330 1.000 2.000 3.000 (psi) Log of TTF (C-hours) Avg. 3330 (psi) Maximum Difference Allowed (psi) 350 Calculated Range Comments: 3137 2787 psi @ TTF Minimum See sitemanager entry for mix information. Maximum 3487 It is ok to continue using the curve, it checked out above the lower limit. Curve Verification -OK Verification strength above the upper limit does not require a new curve. Certified Rep. & Company Name: Tim A. Krason, NDOR Signature Certified Rep. & Company Name: Signature MATURITY XLS cc: PM, Project Inspectors, NDOR District QAM, NDOR PCC Mgr.

M&R Website References

Website Link

http://www.nebraskatransportation.org/mat-n-tests/

 Guidelines- Maturity Curve Method of Development.

The Materials and Research Website

Suidelines-Maturity Curve of Development

NOOR Services & Staff NDOR Divisions/Districts Manual Manual Manual Official Nebraska Government Website

Materials & Research

Text Only

Subscribe Now! | Find Out More First.

Subscribe to receive automatic emails when info on this page changes

Mission Statement: We design, research and test highway materials for use in constructing and maintaining a quality highway system that meets the needs of Nebraska.

M&R Home Page

- Pavement Condition (Surface Distress)
- Standard Test Methods Manual
- Pavement Management Systems
- Geotechnical Policy & Procedures
- Pavement Design Manual
 - Determination Data Sheet for
 - Pavement Design Guidance for
 - DCC Links

- List of Nebraska Qualified Laboratories
- NDOR Laboratory Qualification Manual

Asphalt Links

- Update of NDOR Mixes
- Overview of QC/QA Program
- QC Superpave Software (download instructions)

Specifications Section(For information

- Superpave Asphalt
 - Urban Superpave Asphalt
 - PG Binder

M&R Division Presentations

Contact the Webmaster Text Only

Department of Roads NDOR Services & Staff

NDOR Divisions/Districts

Materials & Research **Quick Links**

M&R Home Page

Approved Products List

2013 NCPA Concrete Workshop

Presentation - Maturity Curve Method Of Development Coming Soon!

2012 PM Conference Presentations

- Fly Ash Slurry Injection (Jeff Soula)
- What's New APL & Geotech (Mark Lindemann)
- SiteManager Team Update (Devin Townsend)
- PCC Pavement Research & Development Team(Wally Heven)
- Nebraska's Asphalt Mixes and Specifications Update (Mike Reynolds)

Consultants - Forms

LAN ACCOUNT FCAC\Forms\M&R Forms

- NDOR Maturity Method Compressive
 Strength Development
- NDOR Validation of Maturity Curve –
 Compressive Strength Development
- Maturity Method Field Data Spreadsheet

